ml_research_tools#
ML Research Tools Package.
A collection of tools for machine learning research, including experiment management, Kubernetes utilities, and LaTeX processing.
- class ml_research_tools.Config(logging=<factory>, redis=<factory>, llm_presets=<factory>)[source]#
Bases:
object
Global application configuration.
- Parameters:
logging (LoggingConfig)
redis (RedisConfig)
llm_presets (LLMPresets)
-
logging:
LoggingConfig
#
-
redis:
RedisConfig
#
-
llm_presets:
LLMPresets
#
- ml_research_tools.get_config(args=None)[source]#
Get configuration from file and command line arguments.
- class ml_research_tools.BaseTool(services)[source]#
Bases:
ABC
Base class for all research tools.
This class defines a standard interface that all tools should implement, including methods for parsing arguments and executing the tool’s functionality.
Initialize the tool with default values.
- Parameters:
services (ServiceProvider)
- __init__(services)[source]#
Initialize the tool with default values.
- Parameters:
services (ServiceProvider)
- Return type:
None
- abstractmethod classmethod add_arguments(parser)[source]#
Add tool-specific arguments to the argument parser.
- Parameters:
parser (
ArgumentParser
) – The argument parser to add arguments to- Return type:
- classmethod add_subparser(subparsers)[source]#
Add a subparser for this tool to a parent parser’s subparsers.
- Parameters:
subparsers (
_SubParsersAction
) – subparsers object from the parent parser- Return type:
- Returns:
The created subparser
- create_progress(**kwargs)[source]#
Create a progress bar with rich formatting.
- Return type:
Progress
- Returns:
Rich Progress object
- Parameters:
kwargs (Any)